
QMFF600R12XFF

1200V600A IGBT Module

Electrical Features

- Trench/Fieldstop IGBT
- Low VCE(sat)
- VCE(sat) with positive temperature coefficient
- 10 µ s short circuit capability
- Fast&soft reverse recovery anti-parallel FWD
- Low inductance case

Typical Applications

- Motor Drives
- High Power Converters
- UPS System
- Servo Drives
- Wind Turbines

IGBT, Inverter

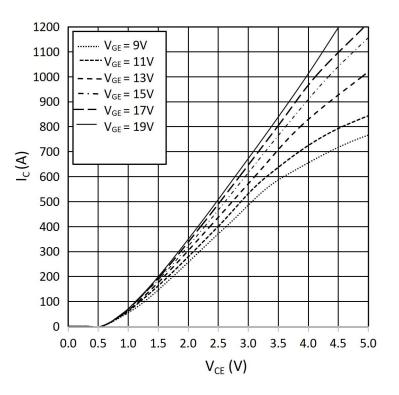
Maximui	n Rated Values						
Symbol	Item	Conditions				ing	Unit
IGBT							
Vces	Collector- emitter voltage	T _{vj} =25°C			12	00	V
V _{GES}	Gate-emitter voltage	_			±2	20	V
Ic	Collector current,DC	$T_{C}=100^{\circ}\text{C}, T_{vj}=175$	°C		60	00	A
Icrm	Repetitive peak collector current	$t_p=1 \text{ms}$	t _p = 1ms			00	A
t_{SC}	Short circuit withstand time	V _{GE} = 15V, V _{CC} =600	0V, T _{vj} ≤ 150°C		10		μs
P _{tot}	Total power dissipation	T _C =25°C ,T _{vj} = 175°C	C		37	50	W
Characte	ristics Values						
Symbol	Item	Conditions			Values		Unit
IGBT				Min.	Typ.	Max.	
Ices	Collector-emitter cut-off current	V _{CE} = 1200V,V _{GE} =0	$V,T_{vj}=25$ °C	_	_	3	mA
Iges	Gate leakage current	$V_{CE}=0V, V_{GE}=20V,$	$T_{vj}=25$ °C	_	_	400	nA
V _{GE(th)}	Gate-emitter threshold voltage	I _C =23mA, V _{CE} =V _{GE}	,T _{vj} =25°C	5.0	5.7	7.0	
		I (00 A	T _{vj} =25°C	-	2.2	2.4	3.7
$V_{ ext{CEsat}}$	Collector-emitter saturation voltage	Ic=600A V _{GE} = 15V	T _{vj} = 125°C	_	2.7	_	V
		V GET 13 V	T _{vj} = 150°C	_	2.9	_	
Cies	Input capacitance	V25V V0V		-	49.77	_	
Coes	Output capacitance	V_{CE} =25V, V_{GE} =0V f=1MHz, T_{vi} =25°C		-	2.28	_	nF
Cres	Reverse transfer capacitance			-	2.22	_	
Q _G	Gate charge	$V_{GE}=\pm 15 V$		-	7.5	_	nC
Rg	Internal gate resistance	$T_{vj}=25$ °C		_	0.28	_	Ω

			T _{vj} =25°C	_	259		
$t_{d(on)} \\$	Turn-on delay time		$T_{vj}=125$ °C	_	238		
			T_{vj} = 150°C	_	227		
			T _{vj} =25°C	_	264		
t _r	Rise time	$V_{CC}=600V$,	T _{vj} = 125°C	_	262	_	
		$I_{C}=600A,$	T _{vj} = 150°C		259		
		$V_{GE}=\pm 15V$,	T _{vj} =25°C	_	988		ns
$t_{d(off)}$	Turn-off delay time	$R_{G(on)}=5.1\Omega$	T_{vi} = 125°C	_	1073		
,		$R_{G(off)}=5.1\Omega$	$T_{vj} = 150$ °C	-	1102		-
		L _{load} =50uH	T _{vj} =25°C	-	145		-
$t_{\rm f}$	Fall time		T_{vj} = 125°C	-	233		-
	T diff tillie	di/dt=4140A/μs	T_{vj} = 150°C	-	281	-	-
		$-(T_{vj}=125^{\circ}C)$	$T_{vj}=25$ °C		149.5	-	
Eon	Turn-on energy (per pulse)	$du/dt=4328V/\mu s$	$T_{vj} = 125$ °C	-	166.0		-
Lon	rum on energy (per pulse)	$(T_{vj}=125^{\circ}C)$	$T_{vj} = 150^{\circ}C$	-	171.5	-	
			$T_{vj}=150$ C $T_{vj}=25$ °C	-	86.2		mJ
_	Turn-off energy (per pulse)		$T_{vj} = 125$ °C	-			-
E_{off}	rum-on energy (per puise)		$T_{vj} = 120 \text{ C}$ $T_{vi} = 150 \text{ C}$	-	106.1	-	_
		TODE.	1 _{vj} - 150 C	_	110.6		77/77
		per IGBT		-	0.04	-	K/W
R _{thJC}	Thermal resistance, junction to case	*	1 TT /// TZ \				
R_{thJC} R_{thCH}	Thermalresistance, case to heatsink	per IGBT/ λgrease=	= 1W/(m·K)	-	0.082		K/W
	Thermalresistance, case to heatsink Temperature under switching	*	= 1W/(m·K)	-40	0.082	150	°C
R _{thCH}	Thermalresistance, case to heatsink Temperature under switching conditions	*	= 1W/(m·K)		0.082	150	
R_{thCH} T_{vjop} Diode ,	Thermalresistance, case to heatsink Temperature under switching conditions Inverter	*	= 1W/(m·K)		0.082	150	
$\begin{array}{c} R_{\text{thCH}} \\ \\ T_{\text{vjop}} \\ \\ \textbf{Diode} \text{ ,} \\ \\ \textbf{Maximum} \end{array}$	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values	per IGBT/ λgrease=	= 1W/(m·K)				°C
R_{thCH} T_{vjop} Diode , Maximus Symbol	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item	per IGBT/ λgrease=	= 1W/(m·K)		Rati	ng	°C Unit
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximun}$ $Symbol$ V_{RRM}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease=} \\ \\ \text{Conditions} \\ \\ T_{vj}\text{=-}25^{\circ}\text{C} \end{array}$			Rati	ng 00	°C Unit V
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximus}$ $Symbol$ V_{RRM} I_{F}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC	per IGBT/ λ grease= Conditions $T_{vj}=25 ^{\circ}\text{C}$ $T_{c}=100 ^{\circ}\text{C}, T_{vj}=150$			Rati 120 60	ng 00 0	°C Unit V A
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximus}$ $Symbol$ V_{RRM} I_{F} I_{FRM}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease=} \\ \\ \text{Conditions} \\ \\ T_{vj}\text{=-}25^{\circ}\text{C} \end{array}$			Rati	ng 00 0	°C Unit V
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximus}$ $Symbol$ V_{RRM} I_{F}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current	per IGBT/ λ grease= Conditions $T_{vj}=25 ^{\circ}\text{C}$ $T_{c}=100 ^{\circ}\text{C}, T_{vj}=150$	°C		Rati 120 600 120	ng 00 0	°C Unit V A
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximus}$ $Symbol$ V_{RRM} I_{F} I_{FRM}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}\text{C}$ $T_{c}=100^{\circ}\text{C}, T_{vj}=150$ $t_{p}=1\text{ms}$	°C T _{vj} =25°C		Rati 120 60	ng 00 0	°C Unit V A
R_{thCH} T_{vjop} $\textbf{Diode,}$ $\textbf{Maximus}$ $Symbol$ V_{RRM} I_{F} I_{FRM}	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}C$ $T_{C}=100^{\circ}C, T_{vj}=150$ $t_{p}=1 \text{ms}$ $I_{F}=600 \text{A}$	$T_{vj}=25$ °C $T_{vj}=125$ °C	-40	Rati 120 600 120	ng 00 0	°C Unit V A
R _{thCH} T _{vjop} Diode , Maximus Symbol Vrrm I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}\text{C}$ $T_{c}=100^{\circ}\text{C}, T_{vj}=150$ $t_{p}=1\text{ms}$	$^{\circ}$ C $ T_{vj}=25^{\circ}$ C $ T_{vj}=125^{\circ}$ C $ T_{vj}=150^{\circ}$ C	-40	Rati 120 600 120	ng 00 0	°C Unit V A A
R _{thCH} T _{vjop} Diode , Maximus Symbol Vrrm I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}C$ $T_{C}=100^{\circ}C, T_{vj}=150$ $t_{p}=1 \text{ms}$ $I_{F}=600 \text{A}$	$T_{vj}=25$ °C $T_{vj}=125$ °C $T_{vj}=150$ °C $T_{vj}=25$ °C	-40 	Rati 120 600 120 2.28 2.51	ng 00 0 00 - -	°C Unit V A A
R _{thCH} T _{vjop} Diode , Maximus Symbol Vrrm I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}C$ $T_{C}=100^{\circ}C, T_{vj}=150$ $t_{p}=1 \text{ms}$ $I_{F}=600 \text{A}$	$^{\circ}$ C $ T_{vj}=25^{\circ}$ C $ T_{vj}=125^{\circ}$ C $ T_{vj}=150^{\circ}$ C	-40 	Rati 120 600 120 2.28 2.51 2.53	ng 00 0 00 - -	°C Unit V A A
R _{thCH} T _{vjop} Diode , Maximus Symbol V _{RRM} I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}C$ $T_{C}=100^{\circ}C, T_{vj}=150$ $t_{p}=1 \text{ms}$ $I_{F}=600 \text{A}$	$T_{vj}=25$ °C $T_{vj}=125$ °C $T_{vj}=150$ °C $T_{vj}=25$ °C	-40 	2.28 2.51 2.53 208.8	ng 00 0 00 - -	°C Unit V A A
R _{thCH} T _{vjop} Diode , Maximus Symbol V _{RRM} I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage	per IGBT/ λ grease= Conditions $T_{vj}=25^{\circ}C$ $T_{C}=100^{\circ}C, T_{vj}=150$ $t_{p}=1 \text{ms}$ $I_{F}=600 \text{A}$	$\begin{array}{c c} ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline \end{array}$	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1	ng 00 0 00 - - - -	Unit V A A
R _{thCH} T _{vjop} Diode , Maximus Symbol V _{RRM} I _F I _{FRM} Characte	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease} = \\ \\ \text{Conditions} \\ \\ T_{vj}=25^{\circ}\text{C} \\ \\ \text{Tc}=100^{\circ}\text{C}, T_{vj}=150 \\ \\ t_{p}=1\text{ms} \\ \\ \\ I_{F}=600\text{A} \\ \\ V_{GE}=0\text{V} \\ \\ \end{array}$	$ \begin{array}{c c} & T_{vj} = 25 ^{\circ} C \\ \hline T_{vj} = 125 ^{\circ} C \\ \hline T_{vj} = 150 ^{\circ} C \\ \hline T_{vj} = 25 ^{\circ} C \\ \hline T_{vj} = 25 ^{\circ} C \\ \hline T_{vj} = 125 ^{\circ} C \\ \hline T_{vj} = 150 ^{\circ} C \\ \hline \end{array} $	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1 267.8 216.1	ng 00 0 00 - - - -	Unit V A A
R _{thCH} T _{vjop} Diode, Maximus Symbol V _{RRM} I _F I _{FRM} Characte V _F	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease=} \\ \\ \text{Conditions} \\ T_{vj}=25^{\circ}\text{C} \\ T_{C}=100^{\circ}\text{C}, T_{vj}=150 \\ t_{p}=1\text{ms} \\ \\ \\ I_{F}=600\text{A} \\ V_{GE}=0\text{V} \\ \\ \\ V_{R}=600\text{V} \end{array}$	$\begin{array}{c c} {}^{\circ}C \\ \hline T_{vj} = 25 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 150 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 25 {}^{\circ}C \\ \hline \end{array}$	-40 	2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4	ng 00 0 0	V A A
R _{thCH} T _{vjop} Diode, Maximus Symbol V _{RRM} I _F I _{FRM} Characte V _F	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease} = \\ \\ \text{Conditions} \\ T_{vj} = 25^{\circ}\text{C} \\ T_{C} = 100^{\circ}\text{C}, T_{vj} = 150 \\ t_{p} = 1\text{ms} \\ \\ \\ I_{F} = 600\text{A} \\ V_{GE} = 0\text{V} \\ \\ \\ V_{R} = 600\text{V} \\ \\ I_{F} = 600\text{A} \\ \\ \end{array}$	$ \begin{array}{c c} ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline \end{array} $	-40 	2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2	ng 00 0 00 - - - -	V A A
RthCH Tyjop Diode , Maximut Symbol VRRM IF IFRM Characte VF IRM	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current	$\begin{array}{c} \text{ per IGBT/}\lambda\text{grease} = \\ \hline \\ \text{ Conditions} \\ T_{vj} = 25^{\circ}\text{C} \\ T_{C} = 100^{\circ}\text{C}, T_{vj} = 150 \\ t_{p} = 1\text{ms} \\ \hline \\ I_{F} = 600\text{A} \\ V_{GE} = 0\text{V} \\ \hline \\ V_{R} = 600\text{V} \\ I_{F} = 600\text{A} \\ V_{GE} = -15\text{V} \\ \hline \end{array}$	$\begin{array}{c c} {}^{\circ}C \\ \hline T_{vj} = 25 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 150 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 150 {}^{\circ}C \\ \hline T_{vj} = 25 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 125 {}^{\circ}C \\ \hline T_{vj} = 150 {}^{\circ}C \\ \hline \end{array}$	-40 	2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2 24.2	ng 00 0 0	V A A ns
R _{thCH} T _{vjop} Diode, Maximus Symbol V _{RRM} I _F I _{FRM} Characte V _F	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current Reverse recovery time	$\begin{array}{c} \text{per IGBT/}\lambda\text{grease} = \\ \\ \text{Conditions} \\ T_{vj} = 25^{\circ}\text{C} \\ T_{C} = 100^{\circ}\text{C}, T_{vj} = 150 \\ t_{p} = 1\text{ms} \\ \\ \\ I_{F} = 600\text{A} \\ V_{GE} = 0\text{V} \\ \\ \\ V_{R} = 600\text{V} \\ \\ I_{F} = 600\text{A} \\ \\ \end{array}$	$T_{vj}=25^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=150^{\circ}C$ $T_{vj}=150^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$ $T_{vj}=125^{\circ}C$	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2 24.2 61.3	ng 00 0 0	V A A
RthCH Tyjop Diode , Maximut Symbol VRRM IF IFRM Characte VF IRM	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current Reverse recovery time	$\begin{array}{c} \text{ per IGBT/}\lambda\text{grease} = \\ \hline \\ \text{ Conditions} \\ T_{vj} = 25^{\circ}\text{C} \\ T_{C} = 100^{\circ}\text{C}, T_{vj} = 150 \\ t_{p} = 1\text{ms} \\ \hline \\ I_{F} = 600\text{A} \\ V_{GE} = 0\text{V} \\ \hline \\ V_{R} = 600\text{V} \\ I_{F} = 600\text{A} \\ V_{GE} = -15\text{V} \\ \hline \end{array}$	$ \begin{array}{c c} ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline \end{array} $	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2 24.2 61.3 76.7	ng 00 0 0	V A A ns
RthCH Tyjop Diode , Maximum Symbol VRRM IF IFRM Characte VF IRM Qr	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current Reverse recovery time Recovered charge	$\begin{array}{c} \text{ per IGBT/}\lambda\text{grease} = \\ \\ \text{ Conditions} \\ T_{vj}=25^{\circ}\text{C} \\ T_{C}=100^{\circ}\text{C}, T_{vj}=150 \\ t_{p}=1\text{ms} \\ \\ \\ I_{F}=600\text{A} \\ V_{GE}=0\text{V} \\ \\ \\ V_{R}=600\text{V} \\ I_{F}=600\text{A} \\ V_{GE}=-15\text{V} \\ \\ -\text{di}_{F}/\text{dt}=2890\text{A/}\mu\text{s} \\ \\ \end{array}$	$\begin{array}{c c} ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{v$	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2 24.2 61.3 76.7 8.8	ng 00 0 0	°C Unit V A A V A ns
RthCH Tyjop Diode , Maximut Symbol VRRM IF IFRM Characte VF IRM	Thermalresistance, case to heatsink Temperature under switching conditions Inverter m Rated Values Item Repetitive peak reverse voltage Forward current, DC Repetitive peak forward current ristic Values Continuous forward voltage Peak reverse recovery current Reverse recovery time	$\begin{array}{c} \text{ per IGBT/}\lambda\text{grease} = \\ \\ \text{ Conditions} \\ T_{vj}=25^{\circ}\text{C} \\ T_{C}=100^{\circ}\text{C}, T_{vj}=150 \\ t_{p}=1\text{ms} \\ \\ \\ I_{F}=600\text{A} \\ V_{GE}=0\text{V} \\ \\ \\ V_{R}=600\text{V} \\ I_{F}=600\text{A} \\ V_{GE}=-15\text{V} \\ \\ -\text{di}_{F}/\text{dt}=2890\text{A/}\mu\text{s} \\ \\ \end{array}$	$ \begin{array}{c c} ^{\circ}C \\ \hline T_{vj} = 25 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 125 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline T_{vj} = 150 ^{\circ}C \\ \hline \end{array} $	-40 	Rati 120 600 120 2.28 2.51 2.53 208.8 249.1 267.8 216.1 401.4 502.2 24.2 61.3 76.7	ng 00 0 0	V A A ns

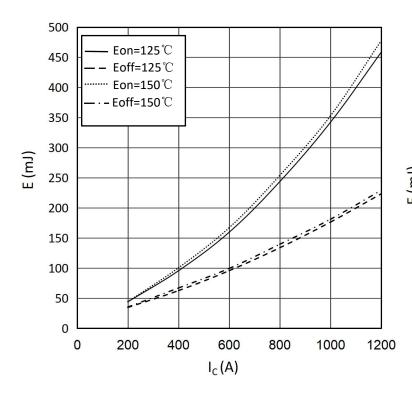
R _{thJC}	Thermal resistance, junction to case	per diode	_	0.07	-	K/W
R _{thCH}	Thermalresistance, case to heatsink	per diode/ λgrease= 1W/(m·K)	_	0.089	_	K/W
T_{vjop}	Temperature under switching conditions		-40		150	°C

NTC Thermistor Characteristics

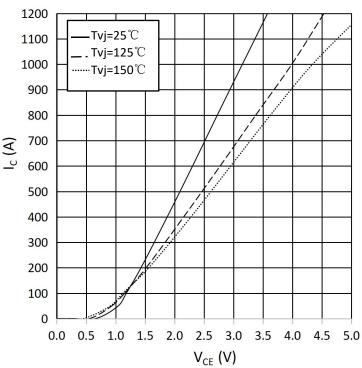
Symbol Item		Conditions	Values			Unit
Symbol	Item	Conditions	Min.	Typ.	Max.	
R25	Rated resistance	Tc=25°C	-	5	_	kΩ
$\Delta R/R$	Deviation of resistance	$T_{C}=100^{\circ}\text{C}, R_{100}=493\Omega$	-5	1	5	%
P ₂₅	Power dissipation	$T_{C}=25$ °C	-	-	20	mW
B _{25/50}	B-constant	$R_2=R_{25}\exp[B_{25/50}(1/T_2-1/(298.15K))$	-	3375	1	
B _{25/80}	B-constant	$R_2=R_{25}\exp[B_{25/80}(1/T_2-1/(298.15K))]$	-	3411	ı	K
B _{25/100}	B-constant	$R_2=R_{25}exp[B_{25/100}(1/T_2-1/(298.15K))$	_	3433	-	


Module

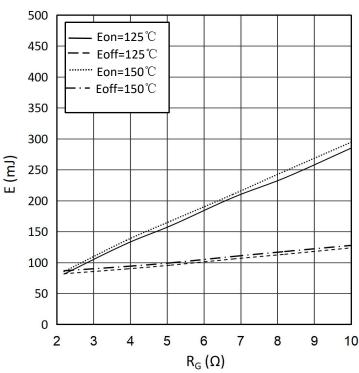
Symbol	Item	Conditions	Rating			Unit
V _{ISOL}	Isolation voltage	Terminals to baseplate, RMS,f=50Hz,t=1min	4000			V
_	Material of module baseplate	-		Cu		_
_	Internal isolation	Basic insulation(class 1, IEC 61140)	Al ₂ O ₃			_
T _{stg}	Storage temperature	-	-4 0~ 125			°C
Symbol	Itam	Conditions	Values			Unit
	Item	Conditions	Min.	Тур.	Max.	
M	Mounting torque for module mounting	Screw M6	3.0	-	5.0	Nm
	Terminal connection torque	Screw M6	2.5	_	5.0	Nm
1	Creepage distance	Terminal to terminal	_	13	-	
ds	Creepage distance	Terminal to base plate	_	14.5	-	mm
	Clearance	Terminal to terminal	_	10	_	
da		Terminal to base plate	_	12.5	_	mm
m	Weight	-	_	340	_	g
L _{sCE}	Stray inductance module			45		nН


output characteristic IGBT, Inverter (typical)

$$I_C = f(V_{CE})$$
$$T_{vj} = 150C$$

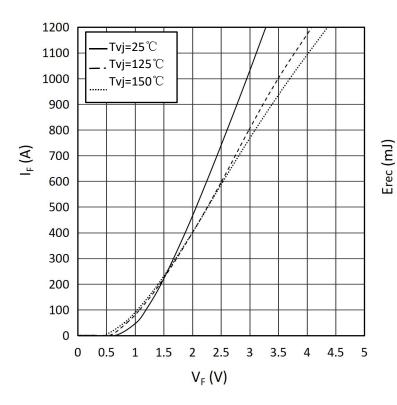

switching losses IGBT, Inverter(typical)

$$\begin{split} E_{on} &= f\left(I_{C}\right), \ E_{off} = f\left(I_{C}\right) \\ V_{GE} &= \pm 15 V, \ R_{Gon} = 5. \ 1\Omega, \ R_{Goff} = 5. \ 1\Omega, \ V_{CE} = 600 V \end{split}$$

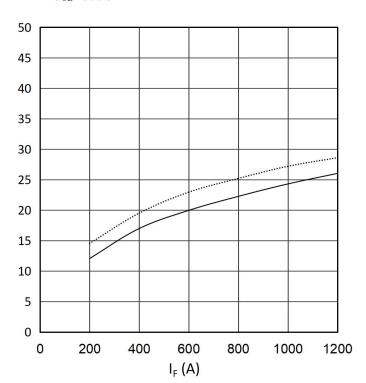

output characteristic IGBT, Inverter (typical)

$$I_C = f(V_{CE})$$
$$V_{GE} = 15 V$$

switching losses IGBT, Inverter(typical)

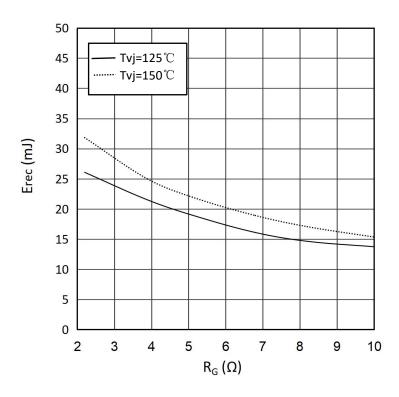

$$E_{on} = f(R_G), E_{off} = f(R_G)$$

 $V_{GE} = \pm 15V, I_C = 600A, V_{CE} = 600V$

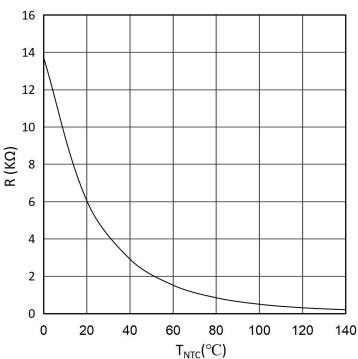

forward characteristic of Diode, Inverter (typical)

$$I_F = f(V_F)$$

switching losses Diode, Inverter (typical)


$$\begin{split} E_{\text{rec}} &= f\left(I_F\right) \; R_{\text{Gon}} \!\!=\!\! 5. \; 1\Omega, \\ V_{\text{CE}} \!\!=\!\! 600 V \end{split}$$

switching losses Diode, Inverter (typical)

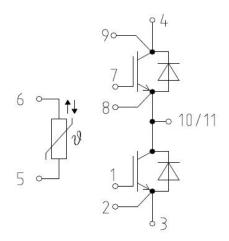

$$E_{rec} = f(R_G)$$

 $I_F = 600A, V_{CE} = 600V$

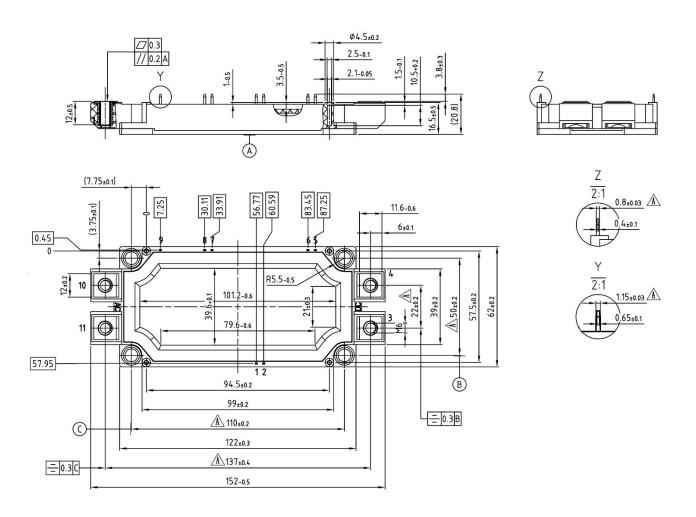
NTC- Thermistor- temperature characteristic (typical)

R=f(T)

reverse bias safe operating area IGBT,Inverter (RBSOA)


$$I_C = f(V_{CE})$$

$$V_{\text{GE}}$$
 = ±15V, R_{Gon} = 5.1 $\Omega,~R_{\text{Goff}}$ = 5.1 $\Omega,~T_{vj}$ = 25 $^{\circ}\mathrm{C}$


c,Modul			
c,Chip			

Circuit diagram headline

Package outlines (Unit: mm)

Terms & Conditions of usage

- 1. The product specifications, characteristics, data, materials and structures given in this datasheet are subject to change without notice.
- 2. The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics. Qinxin Microelectronics Technology Co., Ltd. does not warrant or assume any legal liability or responsibility for the accuracy and completeness of any examples, hints or any typical values stated herein and/or any information regarding the application of the product.
- 3. This datasheet is only used as a reference for customers to apply our products, Qinxin Microelectronics Technology Co., Ltd. does not undertake to permit the use of intellectual property rights or any third-party property rights related to the product information described in this data sheet.
- 4. Although Qinxin Microelectronics Technology Co., Ltd. is committed to enhancing product quality and reliability, all semiconductor products still have a probability of failure. When using Qinxin Microelectronics semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing accidents or events including but not limited to physical injury, fire or damage to other property if any of the products become faulty.
- 5. The products introduced in this data sheet are electrostatic sensitive devices and must be protected against static electricity during device installation, testing, packaging, storage and transportation.
- 6. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.
- 7. Do not use the products introduced in this data sheet in equipment or systems that requiring strict reliability or/and may directly endanger human life such as medical, life-saving, life-sustaining, space equipment, aeronautic equipment, nuclear equipment submarine repeater equipment and equivalents to strategic equipment (without limitation).
- 8.No part of this data sheet may be disseminated and reproduced in any form or by any means without prior written permission from Qinxin Microelectronics Technology Co., Ltd.
- 9. The data contained in this data sheet is exclusively intended for use by professional technicians only. It is the responsibility of the customer's own technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to corresponding application. If you have any question about any portion in this data sheet, contact Qinxin Microelectronics Technology Co., Ltd. before using the product. Qinxin Microelectronics Technology Co., Ltd. shall not be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.