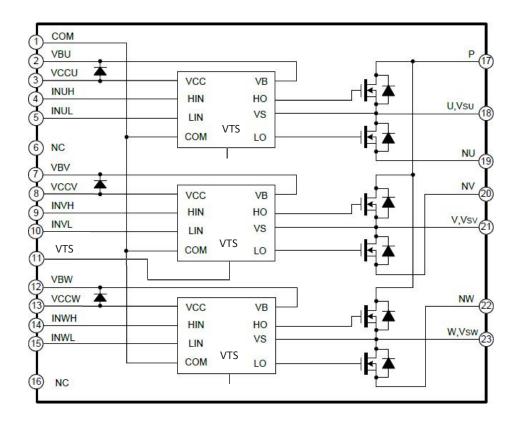
### **Features**

- Integrated 6 fast recovery power MOSFETs (600V/7A)
- Integrated high voltage gate drive circuit (HVIC)
- Compatible with 3.3V & 5V input signal, effective at high level
- Insulation class 1500 Vrms / min
- Built-in quick recovery bootstrap diode
- High reliability and thermal stability, good parameter consistency
- Integrated temperature output

| Product Name | Marking    | Package Type |
|--------------|------------|--------------|
| QMP07M60TA   | QMP07M60TA | DIP-23H      |
| QMP07M60TD   | QMP07M60TD | SOP-23H      |

# **Applications**


- Variable frequency fan
- Frequency conversion fans
- Cooker hood
- Air conditioning compressor
- Dish washer
- Air cleaner





SOP-23H

### **Internal Electrical Schematic**

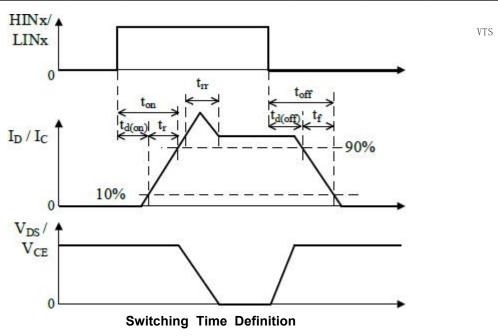




# **Absolute Maximum Ratings**

| Parameter                                                                       | Symbol           | Value        | Unit |
|---------------------------------------------------------------------------------|------------------|--------------|------|
| DC link supply voltage of P-N                                                   | $V_{PN}$         | 600          | V    |
| Single MOSFET output current , Tc=250                                           | I <sub>D25</sub> | 7.0          | ^    |
| Single MOSFET output current , Tc=800                                           | I <sub>D80</sub> | 5.0          | A    |
| Single MOSFET peak output current Tc=25C, pulse width < 100 µs                  | I <sub>DP</sub>  | 11           | Α    |
| Power dissipation per MOSFET, Tc=25C                                            | P <sub>D</sub>   | 15.2         | W    |
| Module supply voltage                                                           | V <sub>CC</sub>  | 25           | V    |
| High side floating supply voltage (V <sub>B</sub> reference to V <sub>S</sub> ) | V <sub>BS</sub>  | 20           | V    |
| Input voltage                                                                   | V <sub>IN</sub>  | -0.3~VCC+0.3 | V    |
| Operating junction temperature                                                  | TJ               | -55 to 150   | ိုင  |
| Operating case temperature, TJ≤ 150°C                                           | T <sub>C</sub>   | -55 to 150   |      |
| Storage temperature range                                                       | T <sub>STG</sub> | -55 to 150   | °C   |
| Single MOSFET thermal resistance, junction-case                                 | $R_{\theta JC}$  | 8.2          | °C/W |
| Isolation test voltage ( 1min, RMS, f = 60Hz)                                   | V <sub>ISO</sub> | 1500         | Vrms |
| Bootstrap diode forward current ,Tc=25℃                                         | IF               | 1            | Α    |
| Bootstrap diode peak forward current , $T_C=25$ C, pulse width =1ms             | I <sub>FP</sub>  | 3            | Α    |

# **Recommended Operation Conditions**


| Parameter                                                                                           | Symbol               | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------------------------------------------------|----------------------|------|------|------|------|
| DC link supply voltage of P-N                                                                       | V <sub>PN</sub>      | -    | 300  | 400  | V    |
| Low side supply voltage                                                                             | Vcc                  | 13.5 | 15   | 16.5 | V    |
| High side floating supply voltage                                                                   | V <sub>BS</sub>      | 13.5 | 15   | 16.5 | V    |
| Logic "1" input voltage (LIN, HIN)                                                                  | V <sub>IN(ON)</sub>  | 2.5  | -    | -    | V    |
| Logic "0" input voltage (LIN, HIN)                                                                  | V <sub>IN(OFF)</sub> | -    | -    | 0.8  | V    |
| External deadtime between HIN and LIN (VCC=VBS=13.5~16.5V, T <sub>J</sub> $\leq$ 150 $^{\circ}$ C ) | Tdead                | -    | 540  | -    | ns   |
| PWM switching frequency , T <sub>J</sub> ≤ 150°C                                                    | fPWM                 | -    | 16   | -    | KHz  |



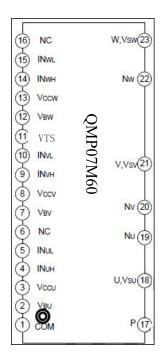
# **Electrical Characteristics** (unless otherwise noted , $T_{j}$ =25°C, Vcc=VBS=15V)

### **Inverter Section**

| Parameter                        | Symbol              | Condition                                  | Min. | Тур. | Max. | Unit |
|----------------------------------|---------------------|--------------------------------------------|------|------|------|------|
| Drain-Source blocking voltage    | B <sub>VDSS</sub>   | V <sub>IN</sub> =0V, ID=250uA              | 600  | -    | -    | V    |
| Drain-Source leakage current     | I <sub>DSS</sub>    | V <sub>DS</sub> =600V, V <sub>GS</sub> =0V | -    | -    | 1    | uA   |
| Drain-Source on-state resistance | R <sub>DS(on)</sub> | VGS=10V, ID=3.5A                           | -    | 1.1  | 1.3  | Ω    |
| Diode forward voltage            | $V_{SD}$            | VSG=0V, Is=3.5A                            | -    | -    | 1.4  | V    |
|                                  | ton                 |                                            |      | 1080 |      | ns   |
|                                  | t <sub>OFF</sub>    | VPN=300V,                                  |      | 660  |      | ns   |
| Switching time                   | t <sub>rr</sub>     | VCC=VBS<br>=15V                            |      | 88   |      | ns   |
|                                  | E <sub>ON</sub>     | ID=1.2A, VIN=0V~5V,                        |      | 75   |      | uJ   |
|                                  | E <sub>OFF</sub>    | Inductive load                             |      | 7    |      | uJ   |



### Bootstrap diode section


| Parameter             | Symbol          | Condition                                                                | Min. | Тур. | Max. | Unit |  |
|-----------------------|-----------------|--------------------------------------------------------------------------|------|------|------|------|--|
| Forward voltage       | V <sub>F</sub>  | I <sub>F</sub> =1A@ T <sub>j</sub> =25°C                                 | -    | 1.35 | 1.8  | V    |  |
| 1 orward voltage      |                 | I <sub>F</sub> =1A@ T <sub>j</sub> =125°C                                | -    | -    | 1.6  | V    |  |
| Reverse recovery time | t <sub>rr</sub> | I <sub>F</sub> =1A, V <sub>R</sub> =30V,<br>di <sub>F</sub> /dt=-200A/μs | -    | -    | 45   | ns   |  |



#### **Control Section**

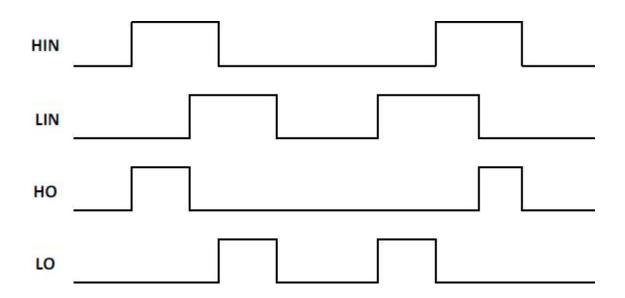
| Parameter                            | Symbol            | Condition             |                     | Min. | Тур. | Max. | Unit |
|--------------------------------------|-------------------|-----------------------|---------------------|------|------|------|------|
| Quiescent VCC supply current         | I <sub>QCC</sub>  | VBIAS (VCC, VBS) =15V |                     | -    | 160  | -    | μΑ   |
| Quiescent VB supply current          | I <sub>QBS</sub>  | Т                     | <sub>A</sub> = 25°C | -    | 70   | 120  |      |
| Temperature output                   | VTS               | V phase I temperature |                     | 600  | 790  | 980  | mV   |
| voltage                              | VIS               | V phase H temperature |                     | 1.8  | 2.25 | 2.7  | V    |
| Low side undervoltage protection     | UV <sub>CCR</sub> | Reset level           |                     | 8    | 8.9  | 9.8  | V    |
| High side undervoltage protection    | UV <sub>BSR</sub> | Reset level           |                     | 8    | 8.9  | 9.8  | V    |
| Logic "1" input voltage<br>(LIN, HIN | V <sub>IH</sub>   | Logic high<br>level   | Between             | 2.5  | -    | -    | V    |
| Logic "0" input voltage (LIN, HIN)   | V <sub>IL</sub>   | Logic low<br>level    | input and<br>COM    | -    | -    | 0.8  | V    |
| Input bias current for LIN,          | I <sub>IH</sub>   | VIN=5V                | Between             | _    | 6    | 15   |      |
| HIN                                  | I <sub>IL</sub>   | VIN=0V                | N=0V input and COM  |      | -    | 1    | μΑ   |

# Pin Assignment

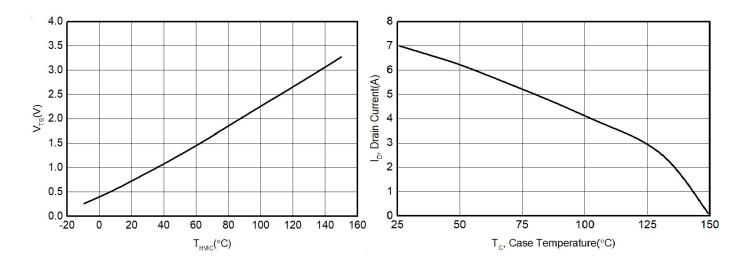




# Pin Description


| Pin Number | Pin name          | I/O | Pin Description                                                      |
|------------|-------------------|-----|----------------------------------------------------------------------|
| 1          | COM               | I/O | Module common ground                                                 |
| 2          | V <sub>BU</sub>   | I/O | U-phase high side floating IC supply voltage                         |
| 3          | V <sub>CCU</sub>  | I/O | U-phase low side driver supply voltage                               |
| 4          | I <sub>NUH</sub>  | I   | U-phase high side gate driver input                                  |
| 5          | I <sub>NUL</sub>  | I   | U-phase low side gate driver input                                   |
| 6          | NC                | I/O | No Connection                                                        |
| 7          | V <sub>BV</sub>   | I/O | V-phase high side floating IC supply voltage                         |
| 8          | V <sub>CCV</sub>  | I/O | V-phase low side driver supply voltage                               |
| 9          | I <sub>NVH</sub>  | I   | V-phase high side gate driver input                                  |
| 10         | I <sub>NVL</sub>  | I   | V-phase low side gate driver input                                   |
| 11         | VTS               | 0   | Temperature sensing output signal                                    |
| 12         | $V_{BW}$          | I/O | W-phase high side floating IC supply voltage                         |
| 13         | V <sub>CCW</sub>  | I/O | W-phase low side driver supply voltage                               |
| 14         | I <sub>NWH</sub>  | 1   | W-phase high side gate driver input                                  |
| 15         | I <sub>NWL</sub>  | 1   | W-phase low side gate driver input                                   |
| 16         | NC                | I/O | No Connection                                                        |
| 17         | Р                 | I/O | Positive bus input voltage                                           |
| 18         | U,V <sub>SU</sub> | 0   | Motor U-phase output and U-phase high side drive bias voltage ground |
| 19         | NU                | I/O | U-phase low side source                                              |
| 20         | NV                | I/O | V-phase low side source                                              |
| 21         | V,V <sub>SV</sub> | 0   | Motor V-phase output and V-phase high side drive bias voltage ground |
| 22         | NW                | I/O | W-phase low side source                                              |
| 23         | W,V <sub>SW</sub> | О   | Motor W-phase output and W-phase high side drive bias voltage ground |

# **Function description**

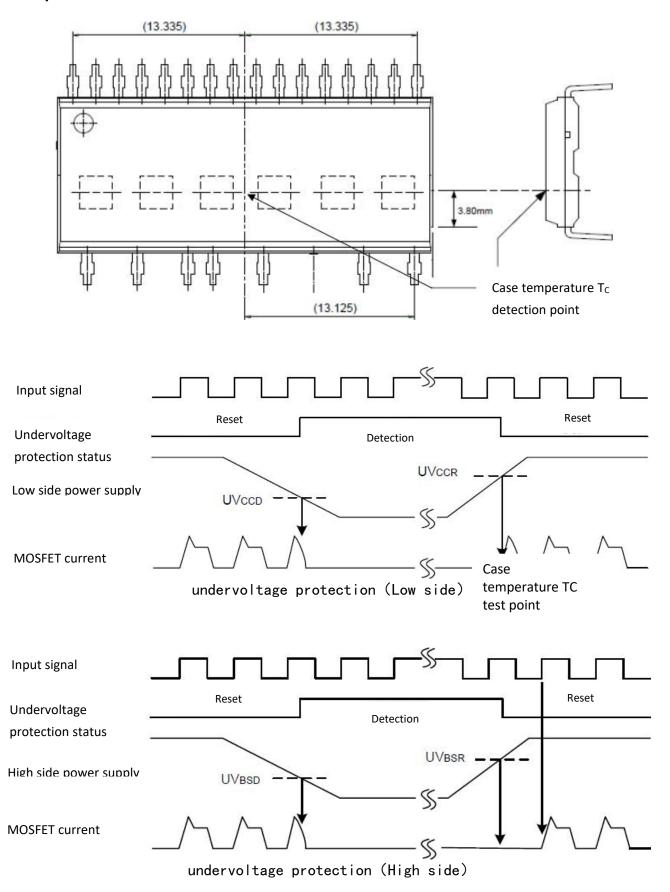

## Input-output table

| INH  | INL  | OUTPUT | REMARK                                              |
|------|------|--------|-----------------------------------------------------|
| 0    | 0    | Z      | The high and low sides of the bridge arm are closed |
| 0    | 1    | 0      | The low side of the bridge arm is opened            |
| 1    | 0    | VDC    | The high side of the bridge arm is opened           |
| 1    | 1    | Forbid | Bridge arm punch through                            |
| Open | Open | Z      | The high and low sides of the bridge arm are closed |



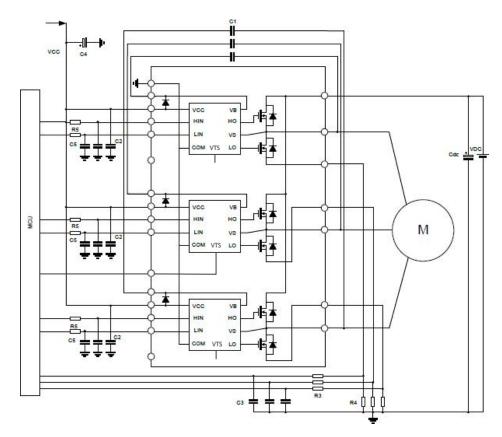


## Control sequence diagram




Temperature Profile of V<sub>TS</sub>(Typical)

I<sub>D</sub> Drain Current vs. Case Temperature



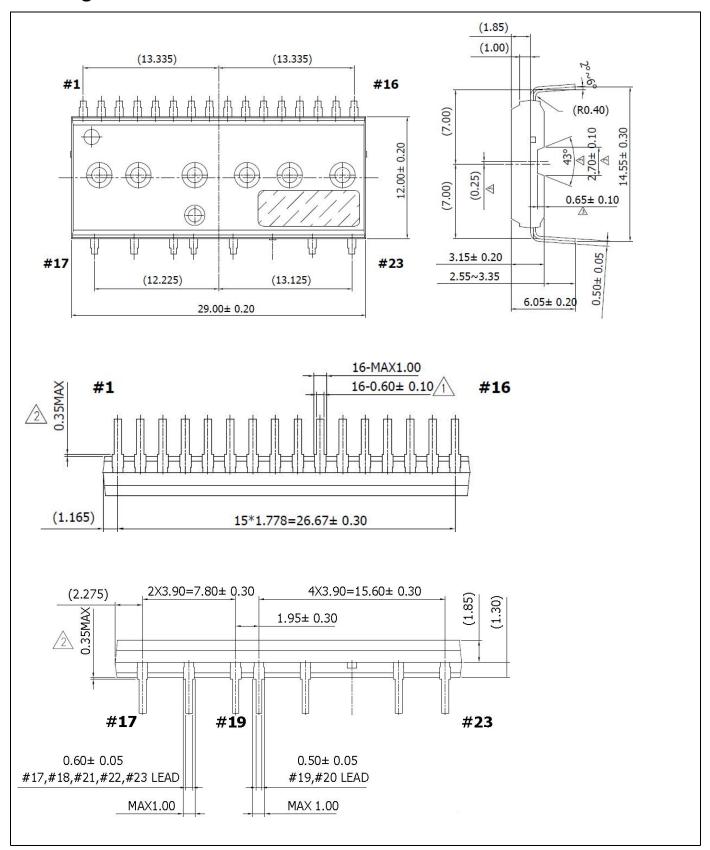

## **Case temperature Tc detection**





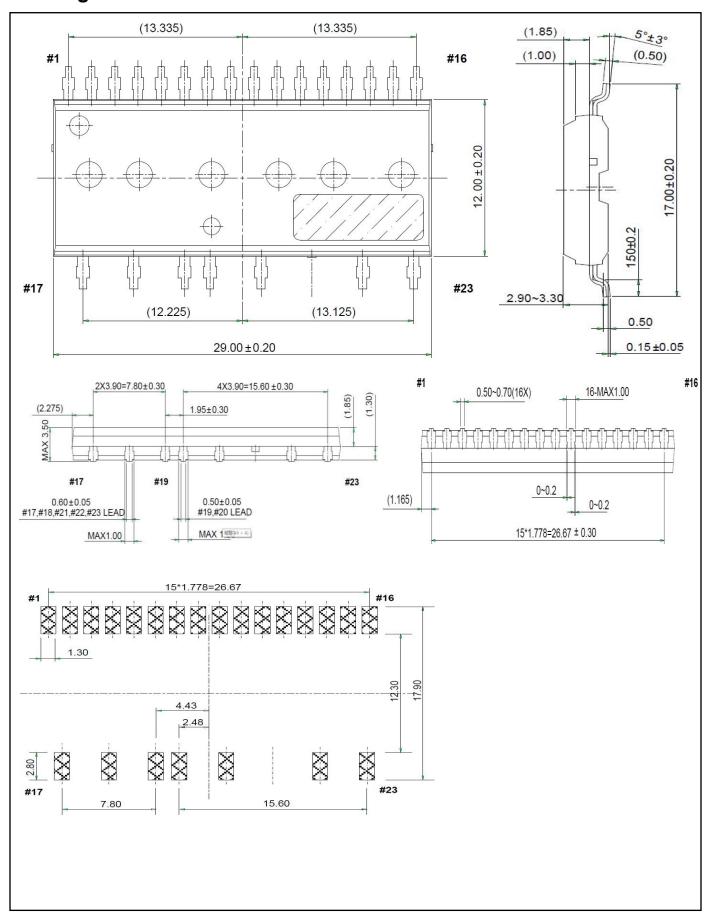
#### **Typical Application**




#### Schematic:

#### Remark:

- (1) The wiring of each input pin shall be as short as possible, otherwise it may cause mis operation; in addition, RC filter can be used to reduce input signal noise.
- (2) All external capacitors should be located close to IPM.
- (3) In order to prevent surge damage, in addition to filter capacitance between PN, it is recommended to add a high-frequency non inductive smoothing capacitance, and the connection of capacitance should be as short as possible.
- (4) The filter capacitance at the input of VCC power supply is recommended to be at least 7 times of bootstrap capacitance C1.
- (5) The bootstrap capacitor C1 is suggested to adopt a capacitor with high frequency characteristics to absorb high frequency ripple current, and its capacitance value is suggested to be greater than 2.2 uf.
- (6) The connection between current limiting resistor R4 and IPM shall be as short as possible to prevent the large surge voltage generated by the connection inductance from damaging IPM.




# Package Outline DIP23





# Package Outline S0P23





#### Disclaimer:

Operating conditions may differ from simulation assumptions in several aspects like level of DC-link voltage,

applied gate-voltage and gate-resistor, case and junction temperatures as well as the power circuit stray-inductance. Therefore, deviations of parameters and assumptions used for the simulation and the real application may exist.

For these reasons we cannot take any responsibility or liability for the exactness or validity of the form's results. The form cannot replace a detailed reflection of the customers application with all of its operating conditions.

Accurate results depend on huge data, so with the measured data is increasing, we should be updated in real time and send it to the corresponding engineer so that he can know it in real time.